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• N=2 SQCD in 4d & Sigma models in 2d

• GLSM as a tool to find BPS spectrum
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• Modeling confinement

• Perturbation theory   



4d SQCD vs 2d sigma 
models



         4d / 2d duality [Dorey Hollowood, Tong]
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Figure 3: The brane configuration for U(N) gauge theory with N +M hypermultiplets,
and k vortices.

shown in Figure 3.

Once again, it is a simple matter to read off the theory on the k D1-branes [17].

It consists of a U(k) field theory, still coupled to the chiral multiplets Z and ψ as in

Section 3, but now augmented with M further chiral multiplets ψ̃ which transform in

the k̄ representation of the gauge group. We shall write,

ψ̃ = ψ̃w
m m = 1, . . . , k ; w = 1, . . . , M

These fields also transform under their own U(M)E flavour symmetry, so the full global

symmetry group of the theory is therefore

G = SU(2)R × S(U(N)D × U(M)E) × U(1)F

where the overall U(1) of the U(N)D×U(M)E flavour symmetry lies in the U(k) gauge

group.

As in Section 3, we are interested in the Higgs branch of the D1-brane theory, which

we denote as M̂k,(N,M). This Higgs branch is expected to be isomorphic to the vortex

moduli space,

V̂k,(N,M)
∼= M̂k,(N,M).

Let us examine the Higgs branch in more detail. It is given by a U(k) quotient of
Ck(N+M+k), parameterised by Z, ψ and ψ̃. The D-term moment map is

Dm
n =

N∑

i=1

ψm
iψ

i†
n −

M∑

w=1

ψ̃m†
w ψ̃w

n − [Z, Z†]mn − rδm
n = 0 (5.27)
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[Hanany Tong]

take k=1to get U(1) theory on D1 (semi-
local vortex)

Ñ

will refer to as HT model

|Qi|2 � |Q̃j |2 = r

D-term 

FI term -- separation of NS5s in x6
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Vortex moduli space
Nf=Nc  color-flavor locked phase

single SUSY vacuum
U(Nc)⇥ SU(Nf ) ! SU(N)

local vortex
SU(N)

SU(N � 1)⇥ U(1)
= CPN�1

Duality between two strongly coupled theories

2d 4d

Nf>Nc semilocal ⇡2(Mvac) = ⇡2

 
SU(N + Ñ)

SU(N)⇥ SU(Ñ)⇥ U(1)

!
= Z



Confined monopoles

rbecomes 2d FI term
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Figure 2: Various regimes for the monopoles and flux tubes in the simplest case of two flavors.

down to U(1)(N−1) by a VEV of the SU(N) adjoint scalar

〈ak
l 〉 = − 1√

2
δk
l Ml . (6.3)

Thus, there are ’t Hooft–Polyakov monopoles embedded in the broken gauge

SU(N). Classically, on the Coulomb branch the masses of (N − 1) elementary
monopoles are proportional to

|(MA − MA+1) |/g2
2

This is shown in the upper left corner of Fig. 2 for the case

N = 2 , ∆m ≡ M1 − M2 .

In the limit (MA − MA+1) → 0 the monopoles tend to become massless, for-

mally, in the classical approximation. Simultaneously their size become infinite
[28]. The mass and size are stabilized by confinement effects which are highly
quantum. The confinement of monopoles occurs in the Higgs phase, at ξ '= 0.

• Now we introduce the FI parameter ξ which triggers the squark condensation.
The theory is in the Higgs phase. We still keep N = 2 breaking parameters h

and µ’s vanishing,

µ1 = µ2 = 0, h = 0, ξ '= 0, M '= 0. (6.4)
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Hanany-Tong model as U(1) GLSM

On Weighted Nonlinear Sigma Models

Abstract

Sigma models on non-compact target spaces have a number of interest-
ing properties which their compact counterparts (e.g. CPN , O(N)) do
not possess. We discuss perturbative aspects of these models.

1 Introduction
Sec:Intro

2 From the Hanany-Tong model to the ZN model
Sec:HananyTongModel

The U(Nc) SQCD with Nf flavors is known to have semi-local string solutions [
Shifman:2006kd
1]. According

to Hanany and Tong conjecture [
Hanany:2003hp
2] the low energy e⇤ective theory on the worldsheet of the

string is given by the strong coupling limit e ⇥ ⇤ of the two-dimensional U(1) gauge theory
with the following Lagrangian

L =

↵
d4⇥

⌃

�
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i e
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1

2e2
�†�

⌥

 , (2.1) eq:LagrWeightedSigma

where � is the field strength for the vector multiplet V and Ñ = Nf �Nc. Matter superfields

⇥i = ni + ⇥̄⌅i + ⇥⌅̄i + ⇥̄⇥F i , i = 1, . . . , Nc

�⇥j = ⇧j + ⇥̄�j + ⇥�̄j + ⇥̄⇥F̃ j , j = 1, . . . , Ñ (2.2)

Vector field in Wess-Zumino gauge

V = ⇥+⇥̄+(A0 + A3) + ⇥�⇥̄�(A0 � A3)� ⇥�⇥̄+⌃ � ⇥�⇥̄+⌃̄ + ⇥̄2⇥⇤+ ⇥2⇥̄⇤̄+ ⇥̄⇥⇥̄⇥D , (2.3)

and twisted chiral field � = D+D̄�V reads

� = ⌃ + i⇥+⇤̄+ � i⇥̄�⇤� + ⇥+⇥̄�(D � iF01) . (2.4)

In components the model reads check all compts formulae!
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1
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i
L
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i
L +H.c.

⌅
. (2.5)

Note that the Fayet-Illiopolous (FI) parameter r in (
eq:LagrWeightedSigmaeq:LagrWeightedSigma
2.1) can have di⇤erent signs, as was

shown by Witten [
Witten:1993yc
3], interpolation between the regions with di⇤erent values of r corresponds

to transition between Calabi-Yau and Landau-Ginzburg sigma models. Also physics of the
model depends on the relationship between Nc and Ñ , to ensure

1

Limit           defines vacuum manifolde ! 1 O(�1)⌦Ñ CPN�1over

perturbation theory is subtle

r > 0. Small |M| expansion gives

K = |M|2
⇧
1 +

Nc↵

i=2

|⇤i|2
⌃⌥

 1 +
Ñ↵

i=2

|⇤̃i|2
�

⌦+ r log

⇧
1 +

N↵

i=2

|⇤i|2
⌃

. (2.11) eq:KahlerPotrb0

Let us stress our attention on change of variables (
eq:MesonChangeeq:MesonChange
2.9). Large values of the FI parameter

r = 4�
g2 correspond to small values of the meson field M, which means that small |M|2

expansion of the Hanani-Tong model is essentially semi-classical expansion. From the other
hand we see that this limit leads to the ZN model. It suggests that perturbative sectors
of these two models are the same. We shall discuss perturbation theory of these models in
more detail in the next section.

3 Perturbation Theory

For any Kähler nonlinear sigma model with Kähler metric gi⇥̄ and coupling constant g the
Gel-Mann-Low function reads cite

�i⇥̄ = a(1)Ri⇥̄ + g2a(2)R(2)
i⇥̄ + g4a(4)R(4)

i⇥̄ . . . , (3.1) eq:PertSeries

where a(i) are some constants and R(i) are operators composed from i-th power of curvature
tensors. For a general metric the form of the first several coe⇥cients is known cite. Let us
first focus on the one-loop calculation. Due to supersymmetry we have r = 4⇥/g2.

General lore of the perturbation theory in nonlinear sigma models suggests that the
theory is non-renormalizable as each order in the perturbation series (

eq:PertSerieseq:PertSeries
3.1) brings a new

irrelevant operator. In some symmetric cases, like Grasmanians, other? which? Einstein
manofolds? no other structures are produced – the renormalization is merely reduced to a
single coupling constant renormalization. It is easy to see that the weighted projected space
WCPN,Ñ is of the first kind – all terms in the series (

eq:PertSerieseq:PertSeries
3.1) have di�erent field dependence.

Let us however recall that the perturbation theory is valid only for large r (small g), so it is
instructive to look at each term in (

eq:PertSerieseq:PertSeries
3.1) after expanding them in large r.

We can calculate for the ZN model
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Comparing with (
eq:KahlerPotrb0eq:KahlerPotrb0
2.11) we conclude that

K = �(N � Ñ)r log det(gi⇥̄) +O(r0) . (3.3)

Since
Ri⇥̄ = �⌅i⌅̄⇥̄ log det(gi⇥̄) (3.4)

we claim that for Nc > Ñ
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3

however there are nonperturbative corrections

One loop twisted effective superpotential is exact in (2,2)
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gives vacua of the theory and its BPS spectrum !!
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Heterotic deformation



(0,2) Theory
In 4d introduce masses 

Z
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obtain heterotic sigma model

[Gorsky Shifman Yung]

[Edalati Tong][Shifman Yung] [Distler Kachru]
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B-right handed superfield

can be treated as model w/ field dependent FI term
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due to generation of H field (field dependent 

theta term)
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(0,2) GLSM
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deformation adds

Not enough SUSY to fix superpotential
Have to dwell on large-N approach 
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Note that the Fayet-Illiopolous (FI) parameter r in (
eq:LagrWeightedSigmaeq:LagrWeightedSigma
2.1) can have di⇤erent signs, as was

shown by Witten [
Witten:1993yc
3], interpolation between the regions with di⇤erent values of r corresponds

to transition between Calabi-Yau and Landau-Ginzburg sigma models. Also physics of the
model depends on the relationship between Nc and Ñ , to ensure
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⇥i = ni + ⇥̄⌅i + ⇥⌅̄i + ⇥̄⇥F i , i = 1, . . . , Nc

�⇥j = ⇧j + ⇥̄�j + ⇥�̄j + ⇥̄⇥F̃ j , j = 1, . . . , Ñ (2.2)
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Large-N solution of (0,2)
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Vacuum equations



Solution of (2,2) model
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in (2,2) from exact superpotential

� = 0 is one of the solutions...

Phase transitions -- artifact of large-N

renormalized FI term vanishes in C phase 
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Spectrum
L = � 1

4e2�
F 2
µ⇥ +

1

e2⇤ 1

(⌅µRe⇤)2 +
1

e2⇤ 2

(⌅µIm⇤)2 + iIm(

¯b �⇤)⇥µ⇥F
µ⇥ � Ve�(⇤) + Fermions

Anomaly

m� = e� 2e� |b|

Photon becomes massless in Cs phase!!

Note that Lambda vacua disappear at  large deformations
Need to sit in zero-vacua

e.g. in Cm phase

Massless goldstino in fermionic sector

[Bolokhov Shifman Yung]
[PK Monin Vinci]

Confinement!



Conclusions and open questions
• Study BPS (and beyond) spectrum of SQCD can 

effectively be done using 2d NLSM (and GLSM)

• Rich variety of phases in (0,2) model at strong 
coupling

• Other heterotic deformations

• Are there flux tubes in theories without FI term? 
(e.g. SU(N)) Omega deformed 4d theory may have 
such solutions...

• Connections to integrable systems in 2d...

• Relationship w/ another 4d/2d duality [Vafa et al]

D̄�+ ⇠ D̄��


